4 FAQs about Energy storage of lithium-sulfur batteries

Are lithium-sulfur batteries the future of energy storage?

Lithium-sulfur batteries are emerging as strong contenders in energy storage; however, a cohesive design framework, systematic performance analysis and benchmarks remain absent. This study bridges this gap by examining recent advancements, with a focus on functional sulfur host materials, using a data-driven approach.

What are lithium-sulfur batteries?

Lithium-sulfur (Li-S) batteries face competition from advanced lithium-ion chemistries and alternative battery technologies. Nickel-manganese-cobalt (NMC) and high-voltage lithium-nickel-manganese-oxide (LNMO) batteries continue to improve in energy density and cycle life, maintaining their dominance in the EV and energy storage markets.

Why are lithium-sulfur batteries important?

Lithium-sulfur batteries have received significant attention in the past few decades. Major efforts were made to overcome various challenges including the shuttle effect of polysulfides, volume expansion of cathodes, volume variation and lithium dendrite formation of Li anodes that hamper the commercialization of the energy storage systems.

Are lithium-sulfur batteries a viable next-generation secondary battery?

Although lithium–sulfur batteries (LSBs) are promising next-generation secondary batteries, their mass commercialization has not yet been achieved primarily owing to critical issues such as the “shuttle effect” of soluble lithium polysulfides (LiPSs) and uncontrollable Li dendrite growth.

View/Download Energy storage of lithium-sulfur batteries [PDF]

PDF version includes complete article with source references. Suitable for printing and offline reading.